Temperature, Ageing and Thermal Management of Lithium-Ion Batteries

نویسندگان

چکیده

Heat generation and therefore thermal transport plays a critical role in ensuring performance, ageing safety for lithium-ion batteries (LIB). Increased battery temperature is the most important accelerator. Understanding managing operation thus multiscale challenge, ranging from micro/nanoscale within single material layers to large, integrated LIB packs. This paper includes an extended literature survey of experimental studies on commercial cells investigating capacity performance degradation LIB. It compares behavior terms influence operating conditions different chemistries cell sizes. A simple model linking some these parameters together presented as well. While appears have large impact acceleration above room during cycling all studied cells, effect SOC C rate appear be rather dependent.Through application new simulations, it shown that testing, actual can deviate severely reported depending management testing rate. shown, lifetime reduction at high rates parts due increase especially energy poor cooling studies. Measuring reporting (surface) allow proper interpretation results transferring laboratory experiments real applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electric Vehicle Lithium Ion Batteries Thermal Management

The lithium ion batteries, thanks to their high densities and high power, became promotes element for hybrid-electric and plug-in electric vehicles. Thermal management of lithium ion battery is important for many reasons, including thermal runaway, performance and maintains a constant temperature during the operating, security, lifecycle. However, in a battery pack, the batteries are stacked ag...

متن کامل

Electro-thermal Modeling of Lithium Ion Batteries

In this paper, the electro-thermal model of Lithium-ion battery for electric vehicles and its related application were studied. The spatial variations of electrode parameter and the reaction heat generated inside battery must be considered when developing an electro-thermal model of Lithium-ion battery for electric vehicles, to ensure the applicability of the developed model under different ope...

متن کامل

Multiscale modeling of lithium ion batteries: thermal aspects

The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibilit...

متن کامل

Lithium-Ion Batteries: Thermal Behaviour Investigation of Unbalanced Modules

In this paper, the thermal behaviour of an unbalanced battery module made of large lithium iron phosphate cylindrical cells of 18 Ah nominal capacity is investigated during its discharge with 18 A, 54 A and 90 A currents. For this study, several cells were assigned in the module to 5%, 10% and 20% initial depth of discharge (DoD). The thermal management of the cells in the module is achieved ba...

متن کامل

Prevent thermal runaway of lithium-ion batteries with minichannel cooling

Thermal management on lithium-ion batteries is a crucial problem for the performance, lifetime, and safety of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Fire and explosions can be triggered by thermal runaway if the temperature of the lithium-ion batteries is not maintained properly. This work describes a minichannel cooling system designed at the battery module level and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14051248